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Energy conservation of a uniformly accelerated point charge

Chung-Sang Ng
Physics Department, Auburn University, Auburn, Alabama 36849
(Received 26 August 1992)

Direct numerical calculation shows that the total electromagnetic-field energy of a one-dimensional
uniformly accelerated classical point charge at one instant is the same as that at another instant when
the charge is moving at the same speed but in the opposite direction of the first instant. This seems con-
tradictory to the fact that the radiation power calculated by the Larmor formula is constant, but is re-

quired by the fact that the radiation reaction vanishes.

It is also shown numerically that the

electromagetic-field energy changes a finite amount when a charge begins or ends its uniformly accelerat-
ed motion. This change of energy is equal to the work done against a §-function radiation reaction. The
implications of these results on the question of whether a uniformly accelerated charge radiates are dis-

cussed.

PACS number(s): 41.60.—m, 41.20.Bt, 03.50.De

I. INTRODUCTION

Two facts in classical electrodynamics seem contradic-
tory. On the one hand, the Larmor formula states that a
charge radiates with a finite emission power whenever the
charge is accelerating. On the other hand, the radiation
reaction on a uniformly accelerated charge (UAC) van-
ishes. Does a UAC radiate? A lot of work has been done
on this problem [1-12]. For a detailed history, we refer
to Refs. [1-3]. Briefly speaking, some concluded that a
UAC does not radiate [5-7], but most authors argued
that it does [1-3,8-12]. Among the latter, some ex-
plained energy conservation by some kind of “internal
energy”’ or so-called “acceleration energy” of the charge
[1,8,9,11]. Some others argued that this “‘acceleration en-
ergy” is actually the electromagnetic- (EM) field energy
“near” the charge [1,2]. Still some others thought that
the radiation energy actually comes from the §-function
field along the moving boundary that separates the region
with the EM field from the region without [3,12]. These
points of view are quite contradictory to one another.

If the explanation based on non-EM “internal energy”
is correct, the total EM-field energy should increase at a
rate given by the Larmor formula. In other words, the
increase of the EM-field energy cannot be explained by
the work done against the radiation reaction alone. To
the best of our knowledge, no one has done a direct cal-
culation of the total EM-field energy in order to see
whether this is true or not. Moreover, although classical
radiation-reaction theory [13] is well established, there
are still problems such as “runaway solutions” or “viola-
tion of causality” within it [14]. Whether radiation-
reaction theory implies energy conservation is not easily
seen directly. The EM field of a UAC provides a direct
test of this. Therefore, we will present such a calculation
here.

What we mean by ‘“direct” is that we compare the
EM-field energy directly, without using a conservation
law such as Poynting’s theorem. There are two
difficulties in doing so. First, if we consider the case that

47

a charge is in uniformly accelerated motion all the time,
then there is a 8-function field that brings an infinite con-
tribution to the total EM-field energy. To avoid this, we
may consider a charge moving at a constant velocity ini-
tially that starts uniformly accelerated motion at some
moment. The EM field outside the future light sphere of
the starting event is still the original Coulomb field, as if
the charge were still moving uniformly. Physically, this
Coulomb field becomes the §-function field as the starting
time t— — o [3,10]. The second difficulty is that the
EM-field energy ‘“near” a point charge is infinite. More-
over, it is hard to compare this infinite energy at one mo-
ment with that at another moment when the charge is
moving at a speed different from the first moment. For-
tunately, for a UAC, there are two moments for each
speed at which the velocity of the charge at one moment
is the negative of that at the other moment. Therefore,
we may compare the total EM-field energy at one mo-
ment with that at the other moment and see whether en-
ergy is conserved.

II. EM FIELDS OF A UAC

The trajectory of a one-dimensional UAC can be writ-
ten as x=X, y=Y, and z=Z, with X=Y =0,
Z =(a?*+1t?)!?, for a certain Lorentz frame (t,x,y,z),
where a is a constant. We have set the speed of light
¢ =1. The radiation power calculated by the Larmor for-
mula is

2e?

—2,2 =

P=2e ata,= e (1)
where e is the magnitude of the charge, and a” is the
four-acceleration. We see that P is a constant. The EM
field of a UAC can be found as [1,4,8,5]

E,=B,=B,=0,
E,=—4ea(Z*+p*—2%) /&,
Ep=8eoz2pz/§3 )
B,=8ea’pt /€,

(2)
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where
E=[(Z*—p®—z%)+4a%p*)?,

with (p,¢,z) being cylindrical coordinates. This field is
valid only for z +¢ >0. To get a solution that is valid for
the whole space-time, we need to multiply a step function
6(t +z) to the field in (2) and add (subtract) a 8-function
term 2epd(z +1)/[p?+a?] to (from) the E, (B,) term.
The EM field given by (2) tends to that of a uniformly
moving charge with constant velocity v =t /Z in the re-
gion near the charge, i.e., (z —Z)*+p? << a*:

E,=B,=B,=0,
E,=ey(z—2)/[yHz—2Z)*+p*]*"?,
- 2., 7\2y 213/2
E,=eyp/ly z—Z)*+p*]*"?,
2422

(3)

B,=eypv /Iv¥Hz—2Z)

2)—1/2=

where y =(1—v Z /a is the relativistic factor.

III. COMPARISON OF TOTAL EM-FIELD ENERGY

Let us consider a charge originally moving at a con-
stant velocity that starts uniformly accelerated motion.
Its trajectory can be written as X =Y =0,

Z,—t,(t+¢t,)/Z; fort=—1t,

z= (@*+tHV? for t>—1t,,

4)

where Z, =(a?+1¢2)!/2, and ¢, is assumed positive. Con-
sider the EM field at a later time t = —¢, <0. Inside the
light sphere centered at z =Z, with radius ¢, —¢,, the
EM field is given by (2). Outside this sphere, the EM field

is given by (3) with Z=2Z, and z—z+t,(¢t;,—1,)/Z,,
since the charge would be at the position
z=Z,—t(t,—t,)/Z, if it were still moving at a con-

stant velocity. Similarly, the EM field for time ¢ =¢, can
be found, except that the radius of the light sphere is
ty+t, and z—z +t,(t;+¢,)/Z, in (3) now. We can
then calculate the difference in the total EM-field energy
between t = —¢, and t =¢, [14]:

AW—-—-— ]fd x(E*+BY), — [dx(E>+B%)_,

J

+dr MHaymA+4[yi+ril—

We may write
AW=AW,+AW, , (5)

where AW, is the difference in the Coulomb-field energy
and AW, is the difference in the UAC field energy. By
(3), it can be shown that

AWU—_—I §f1

dl Z34+(2Z —a)(1—-82)
[Z §2+a2(1_§2)]3

>

(6)
where /. describe two light spheres:
Lo =(t,20)[t,§+(a?+116))!%)/Z,
Note that we have used coordinates
I=[p*+(z—Z )", t=(z—2Z,)/1,

With Zi :Zl _tl(tlitz )/Zl . This can be Written in di'
mensionless variables for the convenience of numerical
calculation:

37171
AW =—W, —=——
’ £ 87'!(7'%"“1'2
delyi+n01—-¢%)
xfl g[y 21/2 g ] 213 ? (7)
1 [1 &+ 1+ 21+ 7282
where 7,=t, /a, 7'2512/(1, E(1+¢%)‘/2, and
WL=2t P= Ztl s (8)

with P given by (1). Similarly, AW, can be found by (2):
AW, =4e%a [ dn |, +ﬂw(zz ©)

where

rl+4Zyr +4[Z9*+(2Z*—a)(1—7?)]
{r’+4Znr +4[Z°n*+2(1—H)]})?

re=(Z,=Zym+ (1, £, —(Z,—Z,)(1—9H)]'?,

w(Z)

’

with Z,=(a?+1t3)!/2. Note that we have used coordi-

nates
=[p*+(z—2Z,?1'"?, n=(z—Z,)/r

In dimensionless variables

)1

AW, =W, = f fk 7

where A=r/a, y,=(1+73)2. By (7) and (10), we can
calculate AW numerically, with the A integration in (10)
done analytically first.

IV. NUMERICAL RESULTS

We used the Romberg method with equal step sizes to
do the numerical integration. This may not be the best

[A2+472nx+4(1+7§n2)13

’ (10)

I
way to handle these kinds of integrations, but it is easy to
program. Even with such an elementary method, it was
found that AW =0 for a very large range of parameter
space (7,,7,). Only for | large or 7, very close to 7y,
could we not get accurate results because of numerical
difficulties. These numerical difficulties mainly come
from round-off errors due to cancellations between large
numbers. We used up to quadruple precision (28 digits)
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in some calculations in order to get accurate results.
Physical reasons for these difficulties are that, when 7 is
large, 7,~¥ (which is the relativistic factor), the charge
is highly relativistic and the Coulomb field is large at the
midplane (§~=0); and when T, is close to 7, both (7) and
(10) include a large contribution from the “near” field,
which is divergent. A few typical numerical results are
shown in Table I. We only show the order of magnitude
of the |[AW/ WLI values, so that we can see more clearly
how close to zero they are numerically. Note that they
are not precise values, and will change if the number of
integration steps changes. So, they actually indicate the
precision of the numerical method for different parame-
ters. For example, a value of 10 '* means that it is pre-
cise up to about 13 digits, and 10~* means that it is pre-
cise up to about three digits, maybe 0.000286, or
0.000098 7, or whatever. In other words, those values
converge to zero up to the precision of the numerical
method allowed. They never converge to finite values.
We have done calculations for many other cases within
the range of parameters of Table I. The results are simi-
lar. From these results, although there are numerical
difficulties as mentioned above, we feel confident that
AW =0 at least for 7, <100, which is already highly rela-
tivistic. In order to extend this range, we need to run the
program with higher precision, or we need to do some
nontrivial analytical work and use a more sophisticated
numerical method. However, the evidence given by the
current results using the simple method is already so
strong that we expect (7) and (10) do add up to zero iden-
tically for all positive 7,7, with 7,<7;. To prove this
and two other “identities” described below are well-
defined mathematical problems. It is more worthwhile to
try to prove them analytically than to try to strengthen
this already strong, but never conclusive, numerical evi-
dence.” We are not able to prove them right now, but
hopefully this can be done later.

V. RADIATION REACTION

Another reason why we think the above result is
correct is that it is consistent with the fact that the radia-
tion reaction [13],

da*
dr

I#=2¢2 —uta,a” |, (1n

TABLE 1. Total EM-field-energy difference AW between
t=tyandt=—t,,fort, <t,.

Ty (:tl/a) T2 (=t2/a) 'AW/WL|
0.1 0.01 1071
0.1 0.099 999 999 10~
2 0.5 10714
2 1.999 999 99 10712
10 0.001 10718
10 1 1079
10 9.999 999 99 107
100 0.1 10~
100 10 1072
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vanishes for a UAC. In (11), u* is the four-velocity, and
7 is the proper time. This consistence gives a strong sup-
port to the assumption that the total EM-field energy
does remain constant when the radiation reaction van-
ishes, even though the Larmor formula gives a finite radi-
ation power. Although it is not a conclusive proof, at
least we did not find evidence showing that we need to in-
troduce any non-EM “‘internal energy” in order to con-
serve energy within classical electrodynamics. The con-
sistence of the EM-field-energy change with the
radiation-reaction theory can also be shown in two other
cases.

A. Energy change when uniformly accelerated motion starts

We may also compare the EM-field energy at =1,
with that of the original uniformly moving charge. This
is equivalent to putting ¢, =¢, in the previous case. We
cannot use (7) and (10) directly to calculate AW for this
case. AW is still given by (5), (6), and (9), with ¢,=1,.
However, both (6) and (9) are divergent now. We need to
combine the two and cancel the near-field contribution
analytically. One way to do so is to introduce a change of
variables in (6):

, (12)

, 1122
1+-1-+ L .
zZ, 42%

This transformation does not change the contribution
from the “near field” to the EM-field energy since r —1,
n—§ as r —0. Then AW, becomes

2
— el [ 1dr 1 rn
AW, 4e‘a fo ) f_ldn l-i-Z1 w(Z,) .

By this, (5), and (9), AW can be expressed in dimension-
less variables as

3 v J13
AW = —_ —_—2—p?| | —=
WL 16vfody ( 2 2 y
J
_2J23+ 1_,__15. _£ s
Y1 Y
(13)
where
1 m
m" fal n(an2+bn+c)" ’

VET/V, Y=Er/2Z,,
a=ti, b=yl , c=yPiil.

Note that J,,,, can be found by analytical integration, and
that J,3/y and J;;/y are finite as y —0. By (13), it was
found numerically that AW=W, /2 for a very large
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range of 7,. Actually, this can be shown analytically for
7,—0. Some typical numerical results are shown in
Table II. The numerical method and interpretation of re-
sults are similar to those discussed above. We also did
calculations based on a variables transformation different
from (12) and got similar results. We expect that (13) is
actually an identity, AW =W, /2 for all 7, although we
cannot prove this analytically.

We see that there is a sudden jump of AW from O for
t, <t, to W; /2 for t,=t,. The only reasonable explana-
tion is that there is a sudden increase in the EM-field en-
ergy when the uniformly moving charge starts moving in
uniformly accelerated motion, since there is also a sudden
change in acceleration at that time. This sudden increase
in energy can be explained by the work done against the
radiation reaction (11) at that moment. It can be shown
by (4) and (11) that

1‘°=—Jé«WL5(t +1,),

where y=Z,/a is the relativistic factor. This means
that the external force that starts the uniformly accelerat-
ed motion must supply an energy W, /2 at the starting
moment, and this energy becomes EM-field energy im-
mediately.

B. Energy change when uniformly accelerated motion ends

If we now let the charge change back to uniform
motion, i.e., Z=Z,+t,(t —t,)/Z,, for t >, it is also
possible to compare the EM-field energy at ¢t =t, >1t,
with that at t = —¢,. The calculation is very similar to
the case t, <t;. We still calculate AW by (5), with AW,
given by (10) for 7,> 7, and AW, given by the right-hand
side of (7) multiplied by 7,/7,. Numerically, we found
that AW =W, for a very large range of parameter space
(7y,7,). Some typical numerical results are shown in
Table III. This result is expected, since as the charge
changes back to uniform motion, the total increase in the
EM-field energy should be equal to that found by the Lar-
mor formula, i.e., W, defined by (8). We see that the
EM-field energy also has a sudden increase at t =¢, since
AW=W, /2 for t,=t, but AW =W, for t,>t,. This
sudden increase in energy can also be explained by the
work done against the radiation reaction. By (11), we
now have

r°=—32’—WL[a(t —t)+8(t+1,)] .

This means that the external force has to supply an ener-
gy W, /2 at t=t, in order to bring the charge back to
uniform motion immediately.

TABLE II. Total EM-field-energy difference AW between
t=tyandt = —t¢,.

1 (=t /a) |AW /W, —0.5|
1072 107
1 10~
20 10~
40 1071
100 1073

TABLE III. Total EM-field-energy difference AW between
t=t,andt=—t,,fort,>1¢,.

T1 (ztl/a) Tz(:tz/a) |AW/WL_1|
0.1 0.1000002 1078
0.1 2 10~
0.1 2x10° 101
1 1.000 02 10~
1 2X10° 10714
10 7 10.000 000 002 1076
10 20 1078

10 100 107
30 30.002 1074
30 300 1072

V1. DISCUSSION

The above three numerical results show directly that
the radiation-reaction formula (11) is consistent with en-
ergy conservation of a UAC. Return to the question
whether a UAC radiates. If we believe that the total
EM-field energy of a charge does remain constant during
its uniformly accelerated motion, as suggested by the
above numerical results, the question whether the charge
radiates becomes a matter of definition. If we define radi-
ation by the increase of the EM-field energy, a UAC does
not radiate. If we define radiation by the power that
flows out of the future light sphere of a certain retarded
point, i.e., by means of the Larmor formula, a UAC radi-
ates all the time, with the constant emission power given
by (1). It is actually not necessary to explain energy con-
servation for the latter definition since energy is always
conserved. Energy simply flows from one region of space
to another.

There is a problem with the explanation that radiation
energy comes from the EM-field energy “‘near” the UAC.
We see that the “near” field energy is exactly the same at
two moments ¢t = —t, and ¢ =t,. The increase in energy
of the UAC field can only come from the decrease in en-
ergy of the Coulomb field outside the UAC field region.
This is expected by the explanation that radiation energy
comes from the &-function field, which is physically a
Coulomb field.

However, there is a problem with the explanation by
the 8-function field also. As t— oo, the Coulomb-field
energy outside the UAC field region tends to zero. It is
not possible to supply a constant power to the UAC field.
The only source now must be the “near” field of the
charge. So we see that both explanations have their own
validity and limitation.

Perhaps these different points of view will not seem so
contradictory if we note that no realistic charged particle
can undergo uniformly accelerated motion forever. Radi-
ation energy must ultimately be supplied by the work
done against the radiation reaction. Then both
definitions above will give the same conclusion that the
charge does radiate.
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